289 research outputs found

    Silicon photonic integrated circuit for fast and precise dual-comb distance metrology

    Get PDF
    We demonstrate an optical distance sensor integrated on a silicon photonic chip with a footprint of well below 1 mm2. The integrated system comprises a heterodyne receiver structure with tunable power splitting ratio and on-chip photodetectors. The functionality of the device is demonstrated in a synthetic-wavelength interferometry experiment using frequency combs as optical sources. We obtain accurate and fast distance measurements with an unambiguity range of 3.75 mm, a root-mean-square error of 3.4 µm and acquisition times of 14 µs

    DAC-Less amplifier-less generation and transmission of QAM signals using sub-volt silicon-organic hybrid modulators

    Get PDF
    We demonstrate generation and transmission of optical signals by directly interfacing highly efficient silicon-organic hybrid (SOH) modulators to binary output ports of a field-programmable gate array. Using an SOH Mach-Zehnder modulator (MZM) and an SOH IQ modulator we generate ON-OFF- keying and binary phase-shift keying signals as well as quadrature phase-shift keying and 16-state quadrature amplitude modulation (16QAM) formats. Peak-to-peak voltages amount to only 0.27 V-pp for driving the MZM and 0.41 V-pp for the IQ modulator. Neither digital-to-analog converters nor drive amplifiers are required, and the RF energy consumption in the modulator amounts to record-low 18 fJ/bit for 16QAM signaling

    Different levels of context-specificity of teacher self-efficacy and their relations with teaching quality

    Full text link
    On the basis of Bandura’s social cognitive theory, researchers often assume that a teachers’ self-efficacy (TSE) will have a positive effect on teaching quality. However, the available empirical evidence is mixed. Building on previous research into TSE, we examined whether assessing class-/task-specific TSE gives a more accurate indication of the associations between TSE assessments and student-rated teaching quality. The analyses were based on the English sample of the Teaching and Learning International Survey (TALIS) Video Study. Mathematics teachers (N = 86) rated their self-efficacy beliefs using generalized task-specific TSE items and class-/task-specific TSE items. Their students (N = 1,930) rated the quality of teaching in their math class. Multilevel regression analyses revealed stronger associations between student-rated teaching quality and class-/task-specific TSE than generalized task-specific TSE. We discuss possible reasons for these results and outline the potential benefits of using class-specific assessments for future TSE research

    Optical coherence tomography system mass-producible on a silicon photonic chip

    Get PDF
    Miniaturized integrated optical coherence tomography (OCT) systems have the potential to unlock a wide range of both medical and industrial applications. This applies in particular to multi-channel OCT schemes, where scalability and low cost per channel are important, to endoscopic implementations with stringent size demands, and to mechanically robust units for industrial applications. We demonstrate that fully integrated OCT systems can be realized using the state-of-the-art silicon photonic device portfolio. We present two different implementations integrated on a silicon-on-insulator (SOI) photonic chip, one with an integrated reference path (OCTint) for imaging objects in distances of 5 mm to 10 mm from the chip edge, and another one with an external reference path (OCText) for use with conventional scan heads. Both OCT systems use integrated photodiodes and an external swept-frequency source. In our proof-of-concept experiments, we achieve a sensitivity of −64 dB (−53 dB for OCTint) and a dynamic range of 60 dB (53 dB for OCTint). The viability of the concept is demonstrated by imaging of biological and technical objects

    Limitations of Near Edge X Ray Absorption Fine Structure as a tool for observing conduction bands in chalcopyrite solar cell heterojunctions

    Get PDF
    A non optimized interface band alignment in a heterojunctionbased solar cell can have negative eff ects on the current and voltage characteristics of the resulting device. To evaluate the use of Near Edge X ray Absorption Fine Structure spectroscopy NEXAFS as a means to measure the conduction band position, Cu In,Ga S2 chalcopyrite thin film surfaces were investigated as these form the absorber layer in solar cells with the structure ZnO Buffer Cu In,Ga S2 Mo Glass. The composition dependence of the structure of the conduction bands of CuInxGa1 xS2 has been revealed for x 0, 0.67 and 1 with both hard and soft NEXAFS and the resulting changes in conduction band off set at the junction with the bu ffer layer discussed. A comprehensive study of the positions of the absorption edges of all elements was carried out and the development of the conduction band with Ga content was observed, also with respect to calculated densities of state

    Silicon-organic hybrid electro-optical devices

    Get PDF
    Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach-Zehnder and IQ-modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as V pi L = 0.06 V.mm and sub-mu W power consumption as required for slow optical switching or tuning optical filters and devices

    Ultra-short silicon-organic hybrid (SOH) modulator for bidirectional polarization-independent operation

    Get PDF
    We propose a bidirectional, polarization-independent, recirculating IQ-modulator scheme based on the silicon-organic hybrid (SOH) platform. We demonstrate the viability of the concept by using an SOH Mach-Zehnder modulator, operated at 10 GBd BPSK and 2ASK-2PSK

    Molecularly imprinted conductive polymers for controlled trafficking of neurotransmitters at solid–liquid interfaces

    Get PDF
    We realize a molecularly imprinted polymer (MIP) which is imprinted with the retinal neurotransmitter glutamate. The films prepared by electrochemical deposition have a smooth surface with a granular morphology as observed using an atomic force microscope. Multiple reflection attenuated total reflection infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to chemically confirm the imprint of a neurotransmitter in the MIP at the solid–liquid and the solid–air interface, respectively. Fluorescence spectroscopy using the dye fluorescamine is used to monitor the changes in neurotransmitter concentration in various solvents induced by application of voltage to the MIP. By controlling neurotransmitter trafficking across a solid–liquid interface with voltage, we suggest the possibility of using such a neurotransmitter imprinted MIP for chemical stimulation of retinal neurons. The current state of the art approach to restore sight in certain cases of blindness is the replacement of damaged photoreceptors by a subretinal implant consisting of light-sensitive photodiodes. Thus a future perspective of our work would be to chemically stimulate the neurons by replacing the photodiodes in the subretinal implant by the neurotransmitter imprinted polymer film

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration combines organic clectro-optic materials with silicon photonic and plasmonic waveguides, The concept enables fast and power-efficient modulators that support advanced modulation formats such as QPSK and 16QAM

    Investigation of Cu poor and Cu rich Cu In,Ga Se2 CdS interfaces using hard X ray photoelectron spectroscopy

    Get PDF
    Cu poor and Cu rich Cu In,Ga Se2 CIGSe absorbers were used as substrates for the chemical bath deposition of ultrathin CdS buffer layers in the thickness range of a few nanometers in order to make the CIGSe CdS interface accessible by hard X ray photo emission spectroscopy. The composition of both, the absorber and the buffer layer as well as the energetics of the interface was investigated at room temperature and after heating the samples to elevated temperatures 200 C, 300 C and 400 C . It was found that the amount of Cd after the heating treatment depends on the near surface composition of the CIGSe absorber. No Cd was detected on the Cu poor surface after the 400 C treatment due to its diffusion into the CIGSe layer. In contrast, Cd was still present on the Cu rich surface after the same treatment at 400
    • …
    corecore